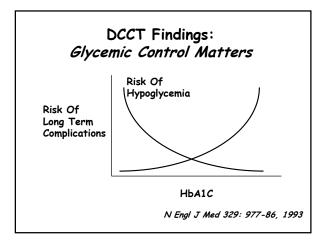
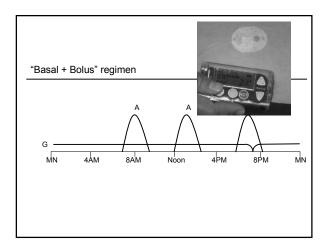


- Overview of current therapy
- $\boldsymbol{\cdot}$ Places for intervention
 - Established diabetes
 - Prevention
 - New Onset

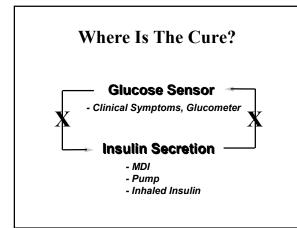


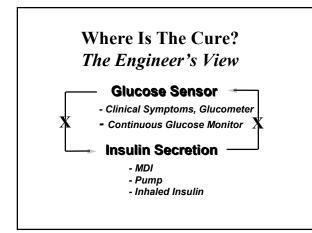
Before and After

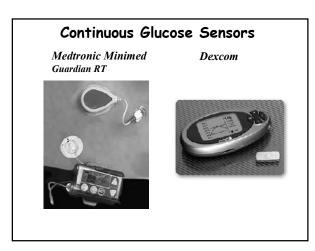
One of the first patients to ever receive insulin therapy

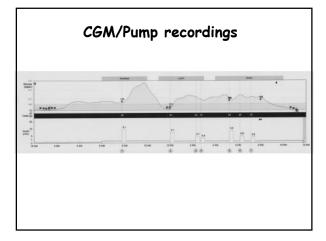


Current Gold Standard For Care: Intensive DM Management

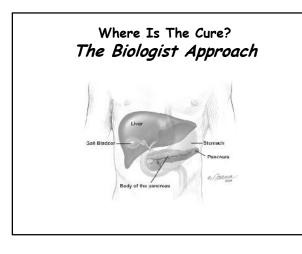

- Patient needs to see a diabetes team
 dietitian, RN / CDE, counselor, and diabetologist
- Monitor blood sugar 4 or more times per day
- Must follow a meal plan, count carbohydrates
- Need to become adept at complex insulin regimens
 - more frequent insulin injections, or use of pump
 - increase insulin to correct high glucoses
 - adjust insulin for variation in CHO intake, exercise
- Frequent follow-up in and out of clinic - telephone, FAX, e-mail

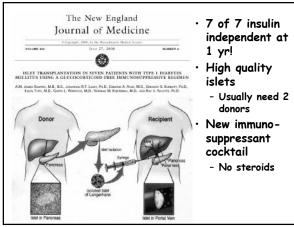


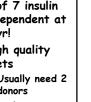



Life In The Post-DCCT Era

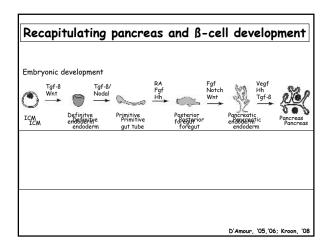
- $\cdot\,$ Not consistently achieving glycemic goals
- $\cdot\,$ Still see burden of long term complications
- \cdot Toll on mental health
 - DepressionEating disorders
- Mortality

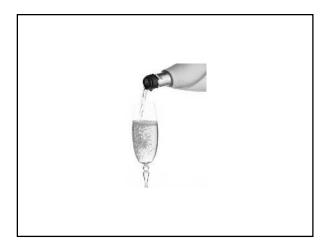


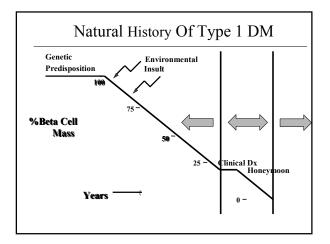

Drawbacks Of Current Sensors


- Not covered by insurance
- \cdot Have to wear a device
- Not as accurate as we would like
 - Still have to use your glucometer to calibrate sensors, confirm values out of range
- Not a closed loop
 - Hard to mimic nature...

Pancreas Transplantation

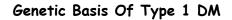

- Big procedure
- It works
 - 50-70% exogenous insulin free at 5 yrs
- Lifelong immuno-suppression

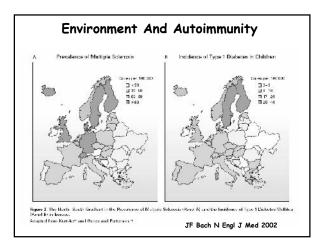



Islets...where do we stand?

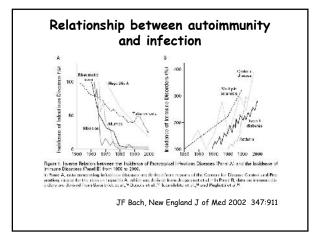
- What are the short and long term risks? Bleeding, clots from procedure
 Long-standing immunosuppression
- How robust are the islets?
- Only 10% remain off exogenous insulin by 5 yrs Can the procedure be exported to other centers?
- Can we optimize the procedure? islet preparation and infusion Currently need 2 or more donors
 - allo- and auto-immunity
- Do we have enough islets?
 - 3,000 cadaveric pancreases / yr - 35, 000 new onset Type 1 / yr, 1.8 million with established T1DM
- What about stem cells?

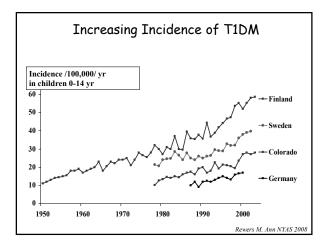


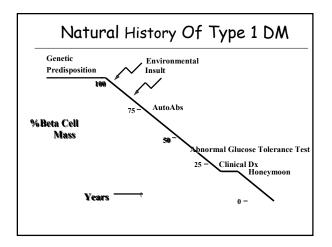


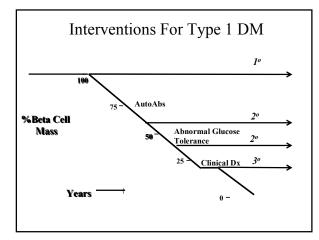


Risk Of Developing Type 1 Diabetes					
• General Population	0.3%				
• Sibling	4%				
• Mother • Father	2-3% 6-8%				

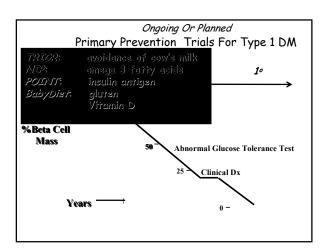



- Complex pattern of genetic transmission, with up to 20 different loci identified
- Half of the genetic risk is from the HLA locus, the region that determines self from non-self
 - High risk genes in 95% of Caucasians with T1DM, but present in 45% of general population (DR3, DR4)
- What about twins?
 Concordance 33 to 50%, higher when followed long term

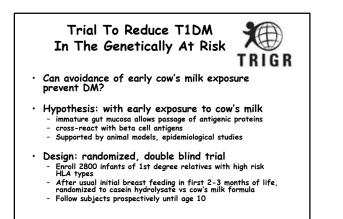


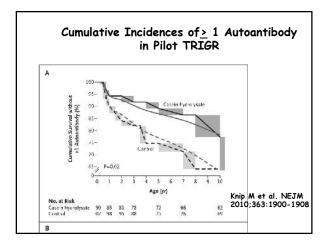

The Hygiene Hypothesis

- Follows from pre-clinical models of diabetes
 NOD mouse raised in clean environment is higher risk for DM than one raised in dirty one
- "Clean living" may increase risk for autoimmune diseases
- $\cdot\,$ Risk is higher in urban than rural settings
- Inverse correlation with immunizations, antibiotic use
- Daycare, other early exposures, lower risk for DM

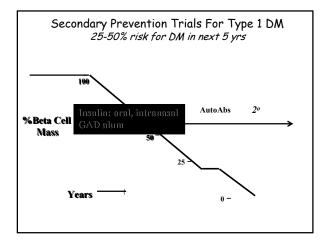


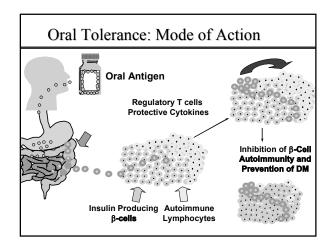
• Attempts at early prevention

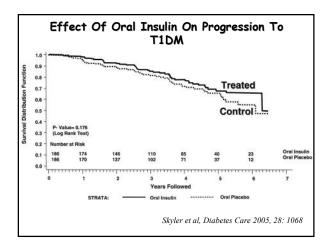

- Less likely to predict who will ultimately get DM Larger studies conducted over longer time period
- Less aggressive intervention, such as dietary manipulation or antigen-based therapy, more likely to be efficacious
- Later stages of intervention
 - Greater likelihood of predicting who will get DM · Smaller studies conducted over shorter time
 - Later intervention may require more aggressive and potentially toxic agents to have efficacy

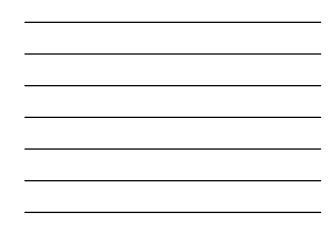


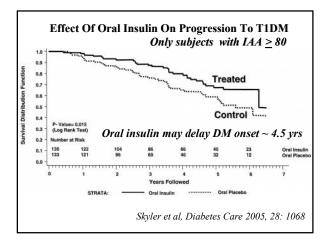
- Focus has been on 1st degree relatives, at 10fold higher risk for T1DM than general population
 - Overall risk for siblings is ~4%
 - Screened > 100,000 first degree relatives in DPT-1
- Ultimately, will need to find means to apply to general population, not just first degree relatives
 90% of new onset T1DM occurs in families without proband

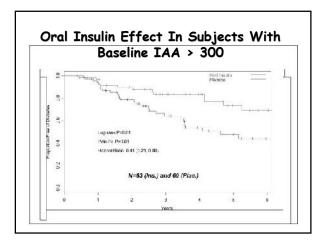


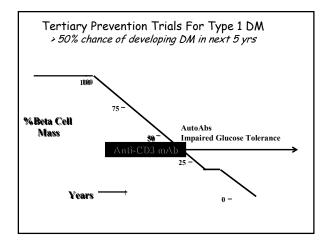


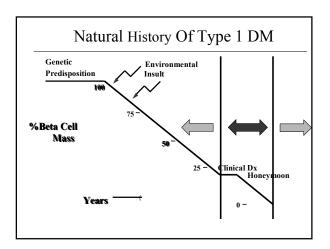











TrialNet Natural History Study

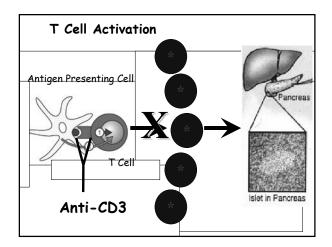
- Who is eligible for screening?
 - Ages 1-45 and immediate family member with DM
 - Ages 1-20 for extended family
- What is the screening test?
 - Single blood test for panel of autoantibodies
 - Insulin, GAD, IA-2, ICA, and Zinc Co-Transporter 8
 - Those who are < 18 and Ab neg can be rescreened yearly
- What happens if they have 1 or > Abs?

 - Staging
 - Genetic screen: HLA class II
 - Metabolic screen: Oral glucose tolerance test
 - Surveillance
 - Follow-up every 6 months with OGTT

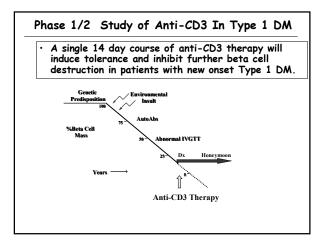
Why Participate In Screening?

- May help the medical community understand diabetes better
- May benefit the family
 - Clarify what chances are of developing diabetes
 - Participants tend to make diagnosis of diabetes much earlier
 Safer, avoid DKA
 - Benefit to starting insulin sooner -> prolong honeymoon
 Eligible for intervention studies
 - Oral insulin, anti-CD3 mAb
- How to initiate family contact?
 - UCSF can do a telephone consent and send out a kit directly to the family for testing in a local lab, OR
 - Your group can become a TrialNet affiliate

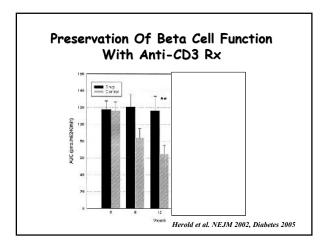
The Honeymoon

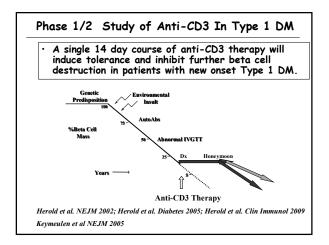

- By the time of diagnosis, up to 15-40% of beta cell function remaining
- Length of honeymoon varies
 - Inversely correlated with age
 - Gradual shift over time
 - 10-15% of teens and adults still have clinically significant insulin production ≥ 5 yrs after DM onset (DCCT NEJM 1993)
- Can serve one well while it lasts…even if on supplemental insulin

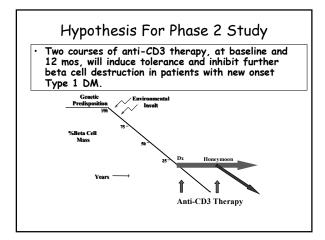
 - Better overall glucose control
 lower HbA1C, less glycemic excursion, lower risk for severe hypoglycemia


Prolonging the honeymoon

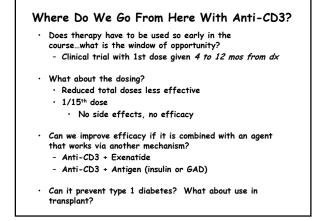
- Immunotherapy works
 - Cyclosporine experience from the '80s · Requires continuous immunosuppression
 - · Not all respond
 - Potential toxicities

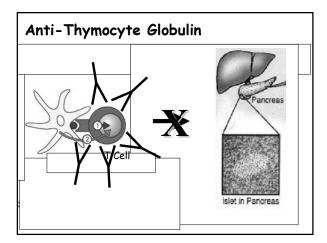

New Onset T1DM Immunotherapy Trials Underway Or Under Consideration • Alefacept · Anti-CD3 • Intensive metabolic • Anti-thymocyte control globulin, +/- GCSF · GAD, Sitagliptin, · Anti-CD20 Lansoprazole • Glutamate Pioglitazone Decarboxylase (GAD) • Etanercept • CTLA4 Ig • Lisofylline • Rapamycin + IL-2 • IL-1beta antagonist Autologous dendritic cells with AS oligo Rx • Atorvastatin Autologous regulatory • Alpha 1 anti-trypsin T cells • Imatinib

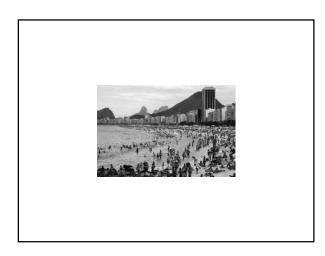










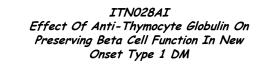


O EGINAL DINTRIFF HON

C-Peptide Levels and Insulin Independence Following Autologous Nonmyeloablative Hematopoietic Stem Cell Transplantation in Newly Diagnosed Type 1 Diabetes Mellitus

 Bits CLE Official RADIE

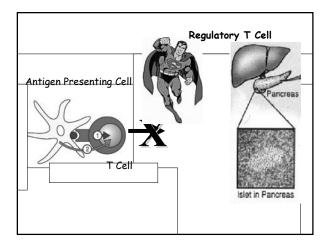
 This ICA Clear AND PID

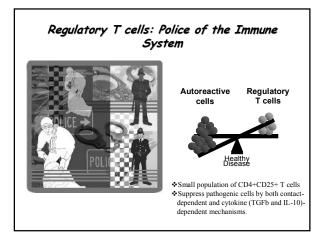

 Data CLE Official RADIE

 < JAMA 2007, 297:1568

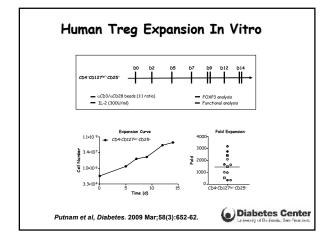
JAMA 2009. 301: 1573

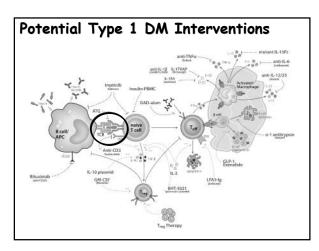
Autologous Non-Myeloblative HSC Therapy

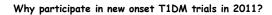

- \cdot Phase 1 study in new onset Type 1 DM
- Intervention
 - Pre-treatment
 - Cyclophosphamide + G-CSF · Collect CD34+ cells in periphery
 - Conditioning Rx
 - Thymo (4.5 mg/kg) + cyclophosphamide - Re-infuse cells
- Safety concerns: 3 wk hospitalization
- Infusion reactions, opportunistic infection, oligospermia
- Metabolic outcome:
 - 20 of 23 pts became insulin free
 12 for mean of 31 mos (14-52)
- Do we need such an aggressive cocktail? Can ATG alone suffice?



ATG + G-CSF


- \cdot In NOD mouse, even more robust remission rate with ATG + G-CSF than ATG alone
 - can use ~1/3rd of ATG dose
- Now conducting a phase 2 trial for subjects \geq 12, 4 mos to 2 yrs from dx • 2.5 mg/kg ATG (2 doses)





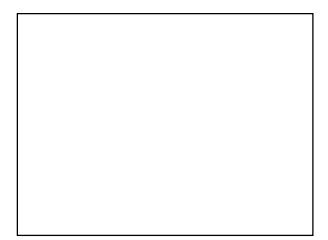
• Phase 1 study with infusion of autologous Tregs expanded in vitro

- First effort in autoimmunity
 Prior trial with related cell product in GVHD (Brunstein et al, Blood 2010)
- Subjects
 <u>></u> 18, within 2 yrs of dx and with measurable C-peptide
- Dose escalation

- Existing therapy is available, and improving
 Not a life threatening condition
 - Usually 1 in 3 chance of randomizing to placebo group
- Intent is that all participants in NIH sponsored new onset studies will benefit from participation
 - All are offered intensive DM management with team Contact from CDE at least every 2 wks to optimize regimen
 - Unlimited glucose test strips
- Improved metabolic control in and of itself helps preserve beta cell function (DCCT, 1993)
- Metabolic memory: tighter control early in the course of DM, even if it cannot be maintained, may have long term benefits in lowering complications risk · DCCT / EDIC studies
- Altruism
 - Ultimately, this is how we move the field forward!

Summary

- Current clinical care for type 1 DM is improving, but limitations remain
- Series of prevention and new onset trials launched or planned to alter the natural course of T1DM
 - Encouraging results to date
 - Await results of follow-up studies
- Many other agents to evaluate, either alone or in combination
- New onset trials will inform our attempts at DM prevention and transplantation


New Onset T1DM Studies *Ages 12-45, up to 24 months from dx*

Study	Age, yrs	DM Duration	Design	Rx	Status
Alefacept	12-35	< 100 days	Blinded 2:1	12 wkly injection x 2	Open
Thymo + G-CSF	12-44	4 - 24 mos	Blinded 2:1	2 doses in-pt	Open
Tregs	18-35	3 - 24 mos	Open label Phase 1	1 dose in-pt	Open

Help Us Cure Type 1 DM!

Contacts For Research Studies

- Kathleen Fraser 415-353-9084 Recruitment Coordinator kfraser@diabetes.ucsf.edu
- Stephen Gitelman, MD 415-476-3748 Principal Investigator <u>sgitelma@peds.ucsf.edu</u>
- http://www.diabetes.ucsf.edu

